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Abstract

In this paper we deal with complex domaimt C C" equipped with a Khler formew = ‘Eagf,
where f : M — R only depends oi;|?, j = 1, ..., n for the complex coordinatesy, . .., z,) in
C". We give an explicit symplectic immersiah of (M, w) into R?* in Section 2 In Section 3we
study when the map is a global symplectomorphism for the case of complete Reinhardt domains
in C2.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Let (M, w) be a Z-dimensional symplectic manifold. By a well-known theorem of
Darboux for every poinp € M there exists a neighborhoddof p and a diffeomorphism
®:U — R? such that®*(wo) = w|, Where wo =) j_;dx; Ady; is the standard
symplectic form orR?" and wherev| denotes the restriction afto U. In other words one
can say that the open séf, () can be equipped with global symplectic coordinates. An in-
teresting question is to understand how large thé/sen be taken and, in particular, when
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the case/ = M occurs, namely whenM, ») admits global symplectic coordinates. The
interest for these kind of questions comes, for example, after Gromov’s disdéyefithe
existence of exotic symplectic structuresRAt (see alsl] for an explicit construction of a
four-dimensional symplectic manifold diffeomorphick8 which cannot be symplectically
embedded inR?, w)). In [13] McDuff proved the following global version of the Darboux
theorem.

Theorem 1.1 (McDuff [13]). Let (M, w) be a simply connected and complete n-dimensional
Kdihler manifold of non-positive sectional curvature. Then there exists a diffeomorphism
@ : M — R such that ¢*(wo) = w, being w the standard symplectic form on R?".

See alsd3-5] for further properties of McDuff’s symplectomorphisgn: M — R?". In
particular, by the previous theorem, the symplectic structure on a Hermitian symmetric
space of non-compact type is standard (see Rlsmark 2.5for the case of classical
bounded domains endowed with their Bergmann forms). More generally, one can study
when (M, ») admits a symplectic immersion inR?Y, with N > n. By a result of Gromov
a contractible symplectic manifold always admits an immersion (embeddirigg\rfor
N sufficiently large (se7,9)).

Observe that both McDuff's and Gromov results are existential and the explicit form of
the symplectic immersion, embedding or symplectomorphism is, in general, very hard to
find. In this paper we find an explicit symplectic immersion

@ (M, w) > (R?, wo)

of (hon-compact) domaing c C" equipped with an exactdhler form which only depends
on |Zj|2, j=1,...,n for the complex coordinatesy ..., z,) in C" (seeLemma 2.1in
Section 2. In Section 3we study when the mag is a global symplectomorphism for the
case of complete Reinhardt domaingifiand we give several examples.

2. Symplectic coordinates on some domains in C"

Let M c C" be a complex domain (open and connectedl'inand letw be a Kahler
form on M. Throughout all this paper we will assume that there exists a smooth func-
tion f: M — R and a smooth functiorf : M — R, defined in an open se¥l C R”
such thatf(z1, ..., zx) = f(lz1l? ..., lza|%) andw = 500 (this last condition means
that the functiory is a Kahler potential forw). We setx; = |z,-|2, j=1...,n and we
denote byf;; : M — R the partial derivatives off with respect to ther j-variable and
by 7, i U — R the partial derivatives of‘xj with respect to thex;-variable. Further
we denote byfy; : M — R (resp. fy,x, : M — R) the function obtained by first taking
the partial derivative oﬁ‘ with respect tax; (resp. the partial derivatives cﬁc ; With re-
spect toy;) and substitutingg ;| = x; iniit, namelyfy;(z1, ..., za) = }‘xj(lzﬂz, o lzl®)

(fx_,-xk(Zl, sy Zn) = }ijk(|Zl|27 ceey |Zn|2) resp-)-
The main result of this section is the following lemma.
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Lemma 2.1. Suppose that the functions }”xk are strictly positive on M for all k =
1,...,n. Consider the functions on M defined by @y, = }xk for k=1,...,n and set
ok(z1, ... zn) = @(lzal?, . .5 |zal®) fork =1, ..., n. Then the map

D M—->C":z2=(z1,...,22) ~ (©1(2)z1, - . ., @u(2)zn) (1)

is a smooth symplectic immersion from (M, w) into (C" = R?", wp), i.e. ®*(wo) = w, where

Zdzj/\dz] Zdéj/\dn], zj =& +in;
j=1

is the standard symplectic structure on R?".

Proof. A straightforward computation using the fact tﬁét: JNka shows that
. i« _
@"(wo) = 5 > derz) A dlpiz)

. on
I ~ ~ ~ ~ ~ _— J—
=5 Z [0281; + (Prforx; + §jPjx)7j26] dzj A dzg,
Jik=1

wheredy; is thes-Kronecker andokxj denote the partial derivative @f with respect tox;
evaluated alz ;|2 = x;. On the other hand:

I < I I ~ _
w=3 jglgj;dzj Adz, = > j;l(kaSkj + frjxezjzk) dzj A dzg. 2

Hence the conclusion follows by
ij~xk=§0k§0kxj+(/)j(pjxk Vj,k::l.,...,}’l

which is a consequence (af = }xk.

We conclude this section with some examples where, with a slight abuse of notation, we
identify the map} with the Kahler potentiaf.

If the manifoldM has complex dimension 1 then thélkder potentiaf only depends on
one variable, say = |z|2. Therefore, since» = 4 aaf is a Kahler form, it follows that the
function f, + xfy is strictly positive and so the function

AR) = xfe, x =z
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is invertible. Denote by;(x) its inverse. Denote by C C the set of points ifC where the
function

VG([z]?)

¥(z) =
|z|

is not defined. Then, byheorem 3.20r by a direct computation, one easily obtains the
following corollary.

Corollary 2.2. Suppose that f, is a strictly positive function then the map

®:M— C\{S}:z ¢(l2Pz. ¢ =/Fs

defines a symplectomorphism of (M, w) to C\ {S} endowed with the restriction of the
symplectic form wg = dx A dy of R? with inverse given by:

U:iC\{S} > M:z+— ¥(z)z.

Example 2.3. Let M =C\ {51} C C be the complement of the closed unit diskGn
endowed with the Ehler form

idzads 0 - 5 5
=-——>—=-3ddlo .
©= 3R 2 g Iz|

The functionfis given in this case by:

’

2
f:(l,—i—oo)—)%

fo= '02 X which is strictly positive (since we are assuming that |z|% > 1) and the set
S is given by the point = 0. By the previous corollary one has that the map

log |z|?

& M—C\{0}:z—~ ||2Z
z

is a symplectomorphism with inverse

Velzl?

|z]

v:C\O}> M:z—~ Z.

Example 2.4. Let M = D; C C be the unit disk irC endowed with the Bhler form

i dzadz

_ P dends i 2
= 5a = 3?1090 )
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The functionfis given in this case by:
f£:(0,1) - —log(1— x),

fr= lflx > 0 andS reduces to the empty set. Borollary 2.2the map
__*
V1—zf?

is a symplectomorphism with inverse

®:D;—>C=R%: 7 (3)

v:C—>D1:z+—~

z
V1+z2

More generally, leD, = {z € C"||z|> = }_'_; Iz? < 1} be then-dimensional ball irC"
endowed with the hyperbolic &ler forme = —izaalog(l— z|?). Then, one can easily

verify that the map(3) (with z = (z1, ..., z»)) defines a global symplectomorphism of
(D,,, w) into (C" = R?", wy).

Remark 2.5. The previous example generalize to the case Hermitian symmetric spaces of
non-compact type due to an unpublished work of J. Rawnsley. Here we consider the first
Cartan’s domain, namely

D={ZeMu,(C)lyy—ZZ" >0}, m,neN,

endowed with the Bhler form
i = i =
W= é88 log K = —(m + n)éaalog det(,, — ZZ%).
Here I, denotes then x m identity matrix andA > O (for a matrixA with real entries)
means thad is positive definite (see e.flL.0] for details). Then, one can show that the map:
@:D—R¥ : Z m+n(, — 229"z (4)

is a diffeomorphism satisfying*(wg) = w.

3. The case of complete Reinhardt domains

In this section we study the symplectic coordinates on complete Reinhardt donm@fns in
These domains have been extensively studied by several authors in the complex geometry
context (see e.d6,12,2,11). Recall that a domai/ c C? is called Reinhardt if z =
(z1, z2) € M whenevemw = (w1, wp) € M and|z1| = |wil, |z2| = |wz|. If the same holds
even for allz with |z1] < |w1| and|z2| < |wz|, the Reinhardt domain is calle@dmplete.
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One can show that any complete Reinhardt domain is of the form
M =D ={(z1, 22) € C?| [1l® < x0, z2|* < F(lz1?)}, (5)

where F : [0, xg) — (0, +00] is a non-increasing lower semi-continuous function from
the interval [Q xg) C R to the extended positive reals, (Boo] (the caserg = +o0 is not
excluded).

In the hypothesis that(0) < oo, one can define a real two-form @y by

i _
wp = ~99log —— .
299 F (1) — 1zl

The following proposition gives us the conditions under whighis a Kahler form orDg.

(6)

Proposition 3.1. Assume that F is continuous on [0, xo) and C? on (0, xq). The following
conditions are equivalent:.

() wr is a Kdhler form on Dy,
(i) the function A(x) = —%3), satisfies A'(x) > 0 Vx € [0, xg), where F' denotes the
first derivative of F with respect to x,

(iil) D is strongly pseudoconvex.

Proof. For the proof sef6]. We just give here the proof of the equivalencesi)ii) since
we will need it later.

Letwr = 5 Zik:l gk dz; A dzi be the expression of thedfler formw - in the (global)
coordinates4i, z2). A simple calculation shows that

—HF' — HxF" + xF"? _ —F _
811 = 2 ) 812 = 821 = ;7 %122 )
H =22 H =22
F
82= 133 , (7)
x=|z1/?

whereH is the real valued function o defined byH(z1, z2) = F(]z1]) — |z2/%. An
easy calculation shows that:

2 /
det i = g11e03 — L9132 = — (25
8k = 811822 — 1812l

AW (8)

x=[z1?

The formw/ satisfy the Kahler condition if and only if the matrig ;- is positive definite
and, sincegy; > 0, this is the case if and only if det; > 0 which, by(8), turns out to be
equivalent to (ii).

In the sequel we will supposer is a Kahler form. Since we only work in the smooth
case we will also assume théis a smooth function on [Ocp).

OurTheorem 3.Zhows that every complete Reinhardt dom& (wr) admits a sym-
plectic embedding intoG? = R*, wg) which turns out to be a symplectomorphism if we
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restrict the codomain t@? \ {S} for a setS ¢ C? whose description follows. By (ii) in
Proposition 3.1the function

_xF/(x)

A(x) = ZOR

defined in [Q xo) is invertible. We denote by
G : [0, F(x0)) — [0, x0) ©)

L . 2 L
its inverse. Let;; andzy in C, set§ = 1-|illz|2|2 and letS c C2 be the set of points iff2
where the real-valued function

Vi1 22) = —/G@® (10)
|z

is not defined.
We can now state and prove our main result on complete Reinhardt domains.

Theorem 3.2. Let Dr be complete Reinhardt domain endowed with the Kdhler form wp
given by Proposition 3.1For (z1, z2) € D, define

¢1(z1, 22) = M @2(z1, 22) = ! .
\ F(lz1/2) — |z2/? VF(z113) = |z2/2

Then the map

® : (Dr, wr) = (C*\ {8}, w0) : (21, 22) > (9121, 9222), (11)
is a symplectomorphism, where we are equipping C?\ {8} with the restriction of the stan-

dard symplectic structure wg on R* = C2.

Proof. Observe that the &hler potential for the formwr on D is given by f =
—log(F(|z1/%) — |z2/?) and fy, = ¢? and f., = ¢2, wherex; = |z;|2, j = 1, 2. Therefore
by Lemma 2.1 the map® defines an symplectic immersion dPf, wr) into (C?, wp).
Define the real valued functions

1o [FGE) _ aP

onC2\ {S}. One can easily verify that the map
W C?\ (S} = Dr: z = (21, 22) ~ (W1(2)z1, V2(2)z2) (13)

is the desired inverse of the mdp
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Example 3.3. Let F be the real-valued, strictly decreasing smooth function oA-[&)
defined by:

c

, ¢>0.
xX+c

F:[0,400) > R:x

It defines the complete Reinhardt domain

C
Drp =4 (z1, 22) € C?||z 2<}.
F {( 1, 22) l1z2 B

Since
xF’ X xF\' c
- _ , ) =———— <0 V 0,1
F x+c (F) (x+c)2< x<[0.1)
by Proposition 3..ve get a well-defined &hler formwr onDr. Moreover the functios
given by(9), namely the inverse of the functiot(x) = —“Fp(')(j)‘) = o isgiven by:
CcX
G(x) =
W=7
Consequently

1 c
1.22) = —/GE) =/ ————.
Vikn @) = VGO = [ e
Set
S = {(z1, z2) € C?|1 — |z1)* + |22/ < O}.

Thus, byTheorem 3.2(Dr, wr) is symplectomorphic toG2 \ {S}, wo) via the map

. 1/2
2 2 2112 ) <L
(c + |z11%)(c — clz2]® — |z1]]z2]%)

1/2
( ¢+ |z1)? ) / .
2.
(¢ — clz21? — |z1/2]z212)

Example 3.4. Let F be the real-valued smooth function on feoo) defined by:

@ Dr — C2\ {S}, (z1,22) — ((

1
F[O,+OO)—)R.X}—> m,
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wherep is a positive integer. Sincg’(x) = —p(x + 1)~7~1 < 0. The functionF defines
the complete Reinhardt domain

1
D = { (21, 22) € C?|z2)? < } .
F {(Z1 22) lIz2] (G r iy

Moreover
xF' px xF"\' p
- _ i ) =-— 0 Vv 0,
F~ xt1 (F) Grp <0 Vel too)
by Proposition 3..ve get a well-defined &hler formwyr on Dg. Moreover the functiows
given by(9), namely the inverse of the functioh(x) = —x;(f)c) = —-L4, is given by:
Gl = ——.
p—X
Consequently
1 1
V1(z1,22) = —/G(§) = :
|z1] V(L + 12212 — |z1/2
Set

S = {(z1. 22) € C*p(L + |z2°) — Jz1/* < O}.
Thus, byTheorem 3.2(Dr, wr) is symplectomorphic toG? \ {S}, wo) via the map

12
)4
z1,
(Iz212 4+ 1)P+1 — |2212(1z112) + 1))

( (Iz2l2 + 1) >”2
(a2 + 17 — 22) )

We now give two examples of complete Reinhardt domdihs, ) namely for which
the setS above reduces to the empty set and hence admitting a system of global symplectic
coordinates.

@ : Dr — C?\ {S}, (z1,22) — ((

Example 3.5. LetF be the real-valued, strictly decreasing smooth function ph)@efined
by:

F:[0,1)>R:x—~ (1-x), p>0.
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Its associated complete Reinhardt domain is given by:

Dp = {z € C?||z1)? + |z2/%? < 1.

Since
xF’ px xF\' p
- _ , ) =- 0 Vv 0,1
F 1—x (F) (1—)c)2< x<[0.1)
by Proposition 3..ve get a well-defined &hler formwyr on Dg. Moreover the functios
given by(9), namely the inverse of the functiof(x) = —xg()(c’)‘) = £, is given by:
X
G(x) = .
®=11
Consequently

1
V(z12+ p(L+ [z2%)

V1(z1, 22) = |711|\/ G(§) =

which is globally defined oft2. Therefore by Theorem 3.2D¢, wr) is symplectomorphic
to (R*, wp) via the map

@ Dp — C2=R%,

(21, 22) > (p(l—lmlz)”l )1/2 ( 1 )1/2
e @— 1z —122) P \@= P —122) )

Observe that fop = 1 our domain is the unitary disk endowed with the hyperbolic metric
(cf. Example 2.3.

Example 3.6. Let F(x) = e in the interval [Q +00). Since F'(x) = —e* < 0, the
function F defines a complete Reinhardt domala. Further

xF’ xF\’
= —X, = _17
F F

and hence, byProposition 3..we get a well-defined Ehler formwr on Dr. In this case
G(x) =xand

1

VAt 1212

Therefore byTheorem 3.2(Dr, wr) is symplectomorphic taR?, wo) via the map

& :Dp — C2=R4,

V1(z1, 22) =
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olaal? 12 1 12
71, 22) V2 . 5 P4 R T ——— 4
(1. 22) eIl — 7,2 b\ el — Izzlz) 2

Other examples: Let F : [0, xo) — (0, +00) be a strictly decreasing smooth function
andA(x) = —XTF/ such thatd’(x) > 0 so defining a complete Reinhardt domaa with
a Kahler formwp. In the following two examples we change the functibin order to
build new domains ofZ2. In both the examples one has to avoid the points wjtk: 0
either to obtain a well-definedahler form Example 3.7 or to get a well-defined domain
(Example 3.9.

Example 3.7. Fix an integer: > 1 and consider the function

F(x) = F(x"). (14)
Observe that
T xIN*"’(x) . X"F'(x") _ "
Ax) = — o) n D) =nA(x"),
and hence

A/()C) — n2xn—lA/(xn) > O,
which vanishes fox = 0. It follows by Proposition 3.hat the form
i = ~
0p = =500 10g(F(1z11%) — Iz2]°)
defines a Khler form on

Di = {(z1, 22) € C?||z1] # O, |z1/? < x0, |2212 < F(lz1/)},

where we take out the point with = 0 because at these pointg is degenerate, namely
the corresponding quadratic form is not positive definite. Therefore, if we dendaigy
the inverse ofA(x) in the interval (Q A(xo)) we get:

~ 1/n
a0 = (o ()" &
whereG(x) denotes the inverse df(x).

As for Theorem 3.2ve get the following proposition.
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Proposition 3.8. Let S be the subset of C? consisting of points where the real valued
function

3 1 £\ Y2 CJal
I//:l.(ZL ZZ) - H (G (n)> ’ %—_ 1+ |Z2|2

is not defined. Then the map
@ 1 (Df\ {z1 = 0}, 07) — (C?\ {5}, w0) : (21, 22) > (Pa21, P222),

—F'(z12) .
Al ) = 16
PP - 122 PR = e e 4o

?1(z1, 22) =

is a symplectomorphism whose inverse is given by:

F(G() _laf

Z ’Z H - . 9 9 — . 9
(22, 22) 1+ (22122 1+ 222

Example 3.9. Letq be a non-negative real number and consider the function

Fx) = % (17)

Consider the domain
Dj = {(z1, z2) € C?||zal # 0, |z2/% < x0. |22 < F(lz2/?)}.
Observe that

Sn L xi”(x)__xF’
F(x)  F

+q=Ax)+q.
ThusA’(x) = A’(x) > 0. Thus, it follows byProposition 3.%hat the two-form
wp = —%35 log(F(z1/%) — Iz2/)
is a Kahler form orD;.. Let us denote by (x) the inverse ofi (x) in the interval §, A(xo)).

Therefore,

G(x) = G(x —q). (18)

As for Theorem 3.2ve then get the following proposition.
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Proposition 3.10. Ler S be the subset of C? consisting of points where the real valued
function

. 1 |z1/2
V1(z1, 22) = j\/G(S -q), &

21 T 1+1z2P
is not defined. Then the map

@ : (D \ {z1 = 0}, 03) = (C*\ {5}, wo) : (21, 22) = (@121, P222),

—F'(|z1/?) 1

= o . 9 @2(Zla ZZ) = =
F(z11%) — |z2I? F(|z1]?) — |z2/?

is a symplectomorphism whose inverse is given by:

(z1,22) = &\/ G(&)z1,

P1(z1. 22) = (19)

F(G(®)) .
1+ [222°2

|z1/?
9 E: 72'
1+ |z2]
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